
THE SPHERICAL TENSOR GRADIENT OPERATOR

Ernst Joachim WENIGER

Institut für Physikalische und Theoretische Chemie, Universität Regensburg,
D-93040 Regensburg, Germany; e-mail: joachim.weniger@chemie.uni-regensburg.de

Received March 3, 2005
Accepted May 18, 2005

Dedicated to Professor Josef Paldus on the occasion of his 70th birthday.

The spherical tensor gradient operator Y l
m ( )∇ , which is obtained by replacing the Cartesian

components of r by the Cartesian components of ∇ in the regular solid harmonic Y l
m ( )r , is

an irreducible spherical tensor of rank l. Accordingly, its application to a scalar function pro-
duces an irreducible spherical tensor of rank l. Thus, it is in principle sufficient to consider
only multicenter integrals of scalar functions: Higher angular momentum states can be gen-
erated by differentiation with respect to the nuclear coordinates. Many of the properties of
Y l

m ( )∇ can be understood easily with the help of an old theorem on differentiation by Hob-
son [Proc. Math. London Soc. 24, 54 (1892)]. It follows from Hobson’s theorem that some
scalar functions of considerable relevance as for example the Coulomb potential, Gaussian
functions, or reduced Bessel functions produce particularly compact results if Y l

m ( )∇ is ap-
plied to them. Fourier transformation is very helpful in understanding the properties of
Y l

m ( )∇ since it produces Y l
m ( )−ip . It is also possible to apply Y l

m ( )∇ to generalized functions,
yielding for instance the spherical delta function δl

m ( )r . The differential operator Y l
m ( )∇ can

also be used for the derivation of pointwise convergent addition theorems. The feasibility of
this approach is demonstrated by deriving the addition theorem of r v

l
mY ( )r with v ∈ �.

Keywords: Cartesian components; Spherical tensor; Hobson’s theorem; Bossel functions;
Spherical delta functions; Quantum chemistry.

1. INTRODUCTION

In the early 17th century, scientific methodology advanced significantly by
what Kline (ref.1, Chap. 16) called the mathematization of science. Roughly
at the same time, the foundations for the later development of calculus
were laid (see for example ref.1, Chap. 17). Differential and integral calculus
greatly extended the arsenal of mathematical techniques that could be used
for a description and analysis of scientific phenomena. Ultimately, this de-
velopment led to a period of unity between mathematics and sciences
which lasted approximately till the end of the 19th or till the beginning of
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the 20th century. In that period, it was frequently not possible to decide
whether someone was predominantly a mathematician or predominantly a
scientist, and mathematics and the sciences enriched each other greatly by
cross-fertilization.

A striking example for this unity between mathematics and the sciences
is provided by Peter Debye who had been a student of Sommerfeld. Among
chemists, Debye is best known for his work on electrolyte solutions, which
earned him the Nobel Prize in Chemistry in 1936. It is, however, not nearly
so well known that he was also an excellent mathematician who made sig-
nificant contribution to the theory of Bessel and Hankel functions (see for
example ref.2, Chap. VIII).

Since the times of Debye, the amount of collective knowledge has in-
creased tremendously. Accordingly, contemporary research is predomi-
nantly done by specialists, who know almost everything about almost
nothing, whereas generalists like Debye, who had done excellent research
in mathematics, physics, and physical chemistry, have become exceedingly
rare. In particular, there is a widening gap between mathematicians and
those that apply mathematics. In the past, mathematicians had developed
new analytical or numerical techniques that greatly helped scientists and
engineers to do research in their disciplines. In return, open scientific or
engineering problems had always provided a valuable source of inspiration
for mathematicians. Unfortunately, this is no longer true. Due to increased
specialization, communication between mathematics and those disciplines
that use mathematics as their main language has deteriorated. This is cer-
tainly a deplorable development because cross-fertilization typically hap-
pens at the interfaces of different disciplines.

Fortunately, encouraging counterexamples still exist: For example, Prof.
Josef Paldus started his career at the Heyrovský Institute in Prague doing ex-
perimental and theoretical work in electrochemistry, and he later also
worked as an experimental spectroscopist. In addition, he soon ventured
into the newly emerging field of quantum chemistry. In 1968, he came as
Brezhnev’s gift to the Department of Applied Mathematics of the Univer-
sity of Waterloo. There, his predominant research interest has been the
treatment of electronic correlation, emphasizing highly sophisticated math-
ematical techniques such as the representation theory of Lie groups. It was
this strong mathematical orientation of his research which earned him – in
addition to numerous other honors – the Fellowship of the prestigious
Fields Institute for Research in Mathematical Sciences.

Quite in the spirit of the highly interdisciplinary research of Prof. Josef
Paldus, I want to discuss in this article a topic that is located somewhere at
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the interface between mathematics and atomic and molecular electronic
structure theory.

Since space is isotropic, free atoms are spherically symmetric and angular
momentum is conserved. Thus, spherical polar coordinates and the ma-
chinery of angular momentum theory lead to significant computational
and conceptual simplifications in atomic structure calculations. It is proba-
bly only a slight exaggeration to claim that atomic electronic structure the-
ory is essentially an application of angular momentum theory.

In the case of molecules, the benefits of spherical coordinates and angu-
lar momentum theory are not so obvious. In general, molecules possess no
spatial symmetry at all, and if they have one, it is a lower symmetry than
spherical symmetry. Thus, neither spherical polar coordinates nor angular
momentum theory lead to a such spectacular reduction of computational
complexity as they do in the case of atoms.

However, chemists have found it helpful to approach molecular elec-
tronic structure theory from the perspective of atoms. For example, the
most successful computational scheme, the so-called LCAO-MO approach,
is based on the tacit assumption that the parentage of atoms facilitates our
attempts of understanding the electronic structure of molecules. Thus, in
molecular electronic structure calculations it is common to use angular mo-
mentum theory at least locally, i.e., with respect to the atomic centers. In
this way, at least some of the formal advantages of angular momentum the-
ory can be retained.

Nevertheless, the use of angular momentum theory for systems lacking
rotational symmetry causes new mathematical and computational chal-
lenges. In the case of atoms, only relatively small angular momentum
quantum numbers occur, and the coupling of irreducible spherical tensors
produces finite expressions consisting of a few terms only. In the case of
molecules, the situation is in general much more complicated: We have to
deal with infinite series expansions over angular momentum states, which
do not necessarily converge rapidly. Thus, we must be able to compute the
typical quantities of angular momentum theory both efficiently and reli-
ably even for very large angular momentum quantum numbers. Quite of-
ten, this is not so easy.

In molecular electronic structure calculations with analytic basis func-
tions centered at the atomic nuclei, the basic quantities are matrix ele-
ments, i.e., essentially multicenter integrals whose evaluation may be very
difficult. It is an undeniable empirical fact that it is often comparatively
easy to obtain explicit analytical expressions for multicenter integrals over
functions that are scalars or irreducible spherical tensors of rank zero with
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respect to their local (atomic) coordinate systems. If, however, the func-
tions occurring in the multicenter integral are irreducible spherical tensors
of higher ranks, one can easily get lost in an algebraic jungle and the deri-
vation of explicit expressions can become extremely difficult or even im-
possible.

It is another empirical fact that it is usually much easier to differentiate
than to integrate. Accordingly, it is an obvious idea to try to generate an ex-
plicit expression for a multicenter integral over nonscalar functions by dif-
ferentiating the simpler expression for the corresponding integral over sca-
lar functions (preferably the simplest scalar functions) with respect to scal-
ing parameters and/or nuclear coordinates (cf. ref.3, Section IV). Generating
differential operators do not necessarily produce closed form expression
that hold for arbitrary quantum numbers. Instead, it may be necessary to
derive a new expression for each set of quantum numbers. Obviously, a
multitude of special formulas is not nearly as convenient as a neat general
explicit expression, but powerful computer algebra systems like Maple or
Mathematica, with the ability to automatically generate FORTRAN or C
code, help to make such an approach feasible (see for example ref.4).

It is relatively easy to generate multicenter integrals of higher scalar func-
tions by differentiating the simplest scalar functions with respect to their
scaling parameters. In the case of a 1s Slater-type or Gaussian function, we
can construct higher scalar functions easily by repeatedly using the rela-
tionships ∂ exp (–αr)/∂α = –r exp (–αr) or ∂ exp (–αr2)/∂α = –r2 exp (–αr2).

The generation of anisotropic functions that are irreducible spherical ten-
sors of rank l from scalar functions is less straightforward: It follows from
Hobson’s theorem5, which is discussed in Section 3, that we have to apply
the spherical tensor gradient operator Y l

m ( )∇ to scalar functions. This differ-
ential operator is obtained by replacing in the regular solid harmonic
Y l

m l
l
mr Y( ) ( , )r = θ φ the Cartesian components of r = (x, y, z) by the Cartesian

components of ∇ = (∂/∂x, ∂/∂y, ∂/∂z).
I came across the differential operator Y l

m ( )∇ during my Ph.D. thesis6 in
which I worked on multicenter integrals of reduced Bessel functions and
their anisotropic generalizations, the so-called B functions. These functions,
which are discussed in Section 5, are a special class of exponentially decay-
ing functions with some very useful properties. When I derived the remark-
ably compact Fourier transform (5.6) of a B function (ref.6, Eq. (7.1-6) on
p. 160), I noticed that the Fourier integral representation (5.8) of an
anisotropic B function Bn l

m
, ( , )α r differs from that of the scalar B function

Bn l
m

+ , ( , )0 α r only by an additional regular solid harmonic Y l
m ( )−ip . Because of
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(4.4), Y l
m ( )ip can be interpreted to be the Fourier transform of the differen-

tial operator Y l
m ( )∇ , and I immediately deduced that the anisotropic B func-

tion Bn l
m

, ( , )α r can according to (5.9) be generated by applying Y l
m ( )∇ to the

scalar B function Bn l
m

+ , ( , )0 α r (ref.6, Eq. (7.1-10) on p. 161).
Of course, this observation aroused my interest: I wanted to know

whether this result can also be proved directly without the help of Fourier
transformation, and I also wanted to know whether the differential opera-
tor Y l

m ( )∇ is a useful analytical tool in different contexts. After the comple-
tion of my Ph.D. thesis, I studied the spherical tensor gradient operator
more seriously. I soon learned that I was not the only one and in particular
not the first one who studied and used this differential operator: The first
article dealing with the spherical tensor gradient operator, which I am
aware of, was published by Hobson5 in 1892. I also noticed that Y l

m ( )∇ is a
highly useful analytical tool for a wide range of problems. For example, I
found recent articles which describe successful applications of Y l

m ( )∇ in
scattering7 or in solid state theory8,9.

From the perspective of quantum chemistry, it is probably more interest-
ing that Y l

m ( )∇ can be extremely useful in the context of molecular
multicenter integrals of exponentially decaying functions, as shown in arti-
cles by Grotendorst and Steinborn10,11, Niukkanen12–14, Novosadov15–20,
Tai21, and in my own research3,22–28.

The spherical tensor gradient operator Y l
m ( )∇ is – as discussed in more de-

tail in Section 3 – also extremely useful in the context of multicenter
integrals of spherical Gaussian functions. For example, Dunlap reformu-
lated in a series of recent articles29–33 the theory of multicenter integrals of
anisotropic spherical Gaussians by systematically applying Y l

m ( )∇ to the
corresponding integrals of 1s Gaussians. Many more references on
multicenter integrals of spherical Gaussians can be found in Section 3.

These examples should suffice to show that Y l
m ( )∇ is indeed a very useful

analytical tool that has been applied successfully to a wide range of prob-
lems. Nevertheless, a reasonably comprehensive discussion of the mathe-
matical properties of the spherical tensor gradient operator from the per-
spective of a potential future user seems to be missing. This is what I intend
to provide with this article.

In Section 2, the spherical tensor gradient operator is introduced and
some general features – in particular those based on its tensorial nature –
are discussed.

Section 3 treats Hobson’s theorem on differentiation, by means of which
many properties of Y l

m ( )∇ can be derived and understood easily.
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Fourier transformation, which is discussed in Section 4, maps the gradi-
ent operator ∇ to ip, or equivalently Y l

m ( )∇ to Y l
m ( )ip . Thus, in momentum

space, we only have to study the comparatively simple multiplicative oper-
ator Y l

m ( )ip whose properties are very well understood. This greatly facili-
tates a theoretical analysis.

In Section 5, the so-called reduced Bessel functions and their anisotropic
generalizations, the so-called B functions, are discussed. These functions
play a special role among exponentially decaying functions because of their
exceptionally simple Fourier transform and because of the ease with which
the spherical tensor gradient operator can be applied.

Classically, the domain of the spherical tensor gradient operator consists
of the differentiable functions f: �3 → �, but it makes sense to apply it also
to generalized functions. Thus, in Section 6 the spherical delta function
and related objects – for example distributional B functions – are treated.

In Section 7, the derivation of addition theorems of essentially arbitrary
irreducible spherical tensors with the help of the spherical tensor gradient
operator is discussed. In addition, the addition theorem of r v

l
mY ( )r with

v ∈ � is constructed in order to demonstrate the feasibility of the whole ap-
proach.

This article is concluded by a short summary in Section 8. Finally, there
are three Appendices: The terminology used in this article is introduced in
Appendix A, the most relevant properties of the spherical harmonics are re-
viewed in Appendix B, and Gaunt coefficients are discussed in Appendix C.

2. THE SPHERICAL TENSOR GRADIENT OPERATOR

The spherical tensor gradient operator Y l
m ( )∇ can be introduced via the ex-

plicit expression (B.12) for the regular solid harmonic Y l
m ( )r . This explicit

expression holds for the Cartesian components of essentially arbitrary
three-dimensional vectors. Thus, we obtain the differential operator Y l

m ( )∇
if we replace in (B.12) the Cartesian components of r = (x, y, z) by the Car-
tesian components of ∇ = (∂/∂x, ∂/∂y, ∂/∂z):

Y l
m l

l m l m

x y

( ) ( ) !( ) !
/

∇ = + + −





×
− −









2 1
4

1 2

π

∂
∂

∂
∂

i
m k k l m k

m k

x y z

m k k l m

+ − −

+

−






 





+ −

∂
∂

∂
∂

∂
∂

i
2

22 ( ) ! !( −≥
∑

20 kk ) !
.

(2.1)
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A new differential operator is not necessarily a useful thing, let alone a
major achievement. In atomic and molecular calculations, we are interested
in functions that are defined in terms of spherical polar coordinates and
that can be expressed as a radial part multiplied by a spherical harmonic:

F f r Y rl
m

l l
m( ) ( ) ( ) .r r= (2.2)

The straightforward differentiations of such an irreducible tensor of rank l
with respect to the Cartesian components x, y, and z of r would in general
lead to extremely messy expressions. Because of the convenient ortho-
normality properties of the spherical harmonics it would be advantageous
if the angular part of such a product could be expressed in terms of spheri-
cal harmonics. Of course, it should be possible to do the necessary algebra
but, in particular for large angular momentum quantum numbers, we
would be confronted with nontrivial technical problems.

Thus, we arrive at the paradoxical statement that the differential operator
Y l

m ( )∇ is practically useful only if it is not necessary to do differentiations
with respect to x, y, and z via the defining explicit expression (2.1). Fortu-
nately, these differentiations can be avoided since Y l

m ( )∇ is just like the cor-
responding regular solid harmonic Y l

m ( )r an irreducible spherical tensor of
rank l (cf. ref.34, p. 312). Consequently, matrix elements involving Y l

m ( )∇
and other irreducible spherical tensors can be handled via the powerful ma-
chinery of angular momentum coupling.

As discussed in more detail later, the product Y l
m

l
mF

1

1

2

2( ) ( )∇ r can be ex-
pressed as a finite linear combination of Gaunt coefficients defined in (C.1),
radial functions γ l l

l

1 2
( )r , and spherical harmonics (ref.26, Eq. (4.7)):

Y

Y

l
m

l
m

l l

l

F

lm m l m l m

1

1

2

2

2
1 2 1 1 2 2

( ) ( )

| |( )

min

max

∇

= 〈 + 〉
=
∑

r

l l
l

l
m mr Y r

1 2

1 2( ) ( ) .+ r
(2.3)

The summation limits lmin and lmax are given by (C.5).
It is possible to derive alternatives to (2.3) which also take into account

the tensorial nature of both Y l
m

1

1 ( )∇ and Fl
m

2

2 ( )r . For example, Bayman35 de-
rived an equivalent expression involving Clebsch–Gordan coefficients in-
stead of Gaunt integrals as in (2.3). However, it was argued (ref.26, Section
III) that ∇ behaves like r under reflections. Accordingly, parity is conserved,
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and the replacement of Clebsch–Gordan coefficients by Gaunt integrals ac-
cording to (C.2) leads to a considerable formal simplification.

As discussed in more details in Section 4, the functions γ l l
l

1 2
( )r in (2.3) can

be obtained by differentiating the radial part f rl2
( ) of the spherical tensor

Fl
m

2

2 ( )r with respect to r (compare the discussion in ref.26, Sections III and
IV). Thus, the systematic exploitation of the tensorial nature of Y l

m

1

1 ( )∇
makes it possible to replace potentially troublesome differentiations with
respect to the three Cartesian components x, y, and z by comparatively be-
nign differentiations with respect to the radial variable r. This is a very im-
portant technical aspect since it greatly facilitates the application of the
spherical tensor gradient operator to spherical tensors of the type of (2.2).

Other expressions for the product Y l
m

l
mF

1

1

2

2( ) ( )∇ r can be found in articles
by Santos36, Stuart37, Niukkanen12, and Rashid38.

3. HOBSON’S THEOREM ON DIFFERENTIATION

The first article on the spherical tensor gradient operator Y l
m ( )∇ , which I am

aware of, is due to Hobson (ref.5, p. 67) who derived in 1892 a very conse-
quential theorem on the differentiation of functions f: �n → �. This theo-
rem is also discussed in Hobson’s book (ref.39, p. 124) that was first pub-
lished in 1931.

In contemporary articles dealing with the spherical tensor gradient opera-
tor, Hobson’s theorem – Eq. (3.1) below – is in most cases completely ig-
nored, but in the article by Bott, Methfessel, Krabs, and Schmidt (ref.8, Sec-
tion IV), the simplified form (3.2) of Hobson’s theorem was even rederived
in a less general form. This is an undeserved neglect. Firstly, many proper-
ties of the spherical tensor gradient operator Y l

m ( )∇ can be deduced and un-
derstood easily via Hobson’s theorem. Secondly, it should be possible to
generalize the approach described in this article, which is based on the
three-dimensional regular solid harmonics Y l

m ( )r , to differential operators
based on n-dimensional hyperspherical harmonics. A problem of obvious
physical relevance would be the construction of differential operators asso-
ciated to the four-dimensional hyperspherical harmonics, which are for in-
stance discussed in books by Avery40,41 and Judd42 (Sections 2 and 3 and
Appendix 2) or also in ref.43 (Section VI).

In three-dimensional form – which is all we need here – Hobson’s theo-
rem can be formulated as follows (cf. ref.3, Eq. (4.13)):

Let fn(x, y, z) be a homogeneous polynomial of degree n ∈ � in the vari-
ables x, y, z, and let F be any (differentiable) function that depends only on
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r2 = x2 + y2 + z2. Then, the application of the differential operator fn(∂/∂x,
∂/∂y, ∂/∂z) to F can be expressed in closed form according to

f
x y z

F r

v r

n

n v

v

n n v

∂
∂

∂
∂

∂
∂

, , ( )

!









= 





−

=

−

∑

2

2

0
2

2 d
d

F r f x y zv
n( ) ( , , ) .2 2













∇

(3.1)

Let us now assume that fn is not only a homogeneous polynomial of degree
n, but also a solution of the three-dimensional homogeneous Laplace equa-
tion (B.8). Then, (3.1) simplifies considerably because in the sum on the
right-hand side only the power ∇ 2v with v = 0 produces a nonzero result:

f
x y z

F r
r

F rn
n

n∂
∂

∂
∂

∂
∂

, , ( ) ( )






 = 














2

2

22
d

d 
f x y zn ( , , ) . (3.2)

As discussed in Appendix B, the regular solid harmonic Y l
m ( )r is a polyno-

mial solution of the homogeneous Laplace equation (B.8) of degree l. Ac-
cordingly, Hobson’s theorem applies in its simplified form (3.2), and we ob-
tain (cf. ref.3, Eq. (3.11)):

Y Yl
m l

l

l
mF r

r
F r( ) ( ) ( ) ( ) .∇ = 

















2

2

22
d

d
r (3.3)

If we now set F(r2) = ϕ(r) and use d/dr2 = 1/(2r)d/dr, we obtain (cf. ref.3, Eq.
(3.12)):

Y Yl
m

l

l
mr

r r
r( ) ( ) ( ) ( ) .∇ = 

















ϕ ϕ1 d
d

r (3.4)

It follows from either (3.3) or (3.4) that Y l
m ( )∇ can be viewed as a generating

differential operator which transforms a scalar function – an irreducible
spherical tensor of rank 0 – to an irreducible spherical tensor of rank l.

Next, let us apply the spherical tensor gradient operator Y l
m

1

1 ( )∇ to irre-
ducible spherical tensors Fl

m

2

2 of the type of (2.2) with nonzero rank l2. To
simplify things, let us for the moment assume that such a spherical tensor
Fl

m

2

2 ( )r satisfies a relation of the kind of (3.4), i.e., it can be generated by ap-
plying Y l

m

2

2 ( )∇ to a suitable scalar function Φl r
2
( ):

F rl
m

l
m

l2

2

2

2

2
( ) ( ) ( ) .r = ∇Y Φ (3.5)
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In view of Y Y Yl
m

l
m

l
m

l
m

lF r
1

1

2

2

1

1

2

2

2
( ) ( ) ( ) ( ) ( )∇ = ∇ ∇r Φ , we need an explicit expres-

sion of manageable complexity for the product Y Yl
m

l
m

1

1

2

2( ) ( )∇ ∇ . This can be
accomplished easily. If we multiply the linearization formula (C.4) of the
surface harmonics by r l l1 2+ , we obtain the linearization formula of the regu-
lar solid harmonics:

Y Yl
m

l
m

l l

l

lm m l m l m r

1

1

2

2

2
1 2 1 1 2 2

( ) ( )

| |( )

min

max

r r

= 〈 + 〉
=
∑ 2 1 2∆l

l
m mY + ( ) .r

(3.6)

It follows at once from the summation limits (C.5) that the abbreviation ∆l
defined by (C.6) is either a positive integer or zero. Accordingly, (3.6) can
also be interpreted as a linearization formula for certain polynomials in the
Cartesian components of an essentially arbitrary three-dimensional vector
r. Thus, (3.6) also holds for r = ∇ , and we obtain (see for example ref.12, Eq.
(15), ref.15, Eq. (65), or ref.3, Eq. (4.24)):

Y Yl
m

l
m

l l

l

lm m l m l m

1

1

2

2

2
1 2 1 1 2 2

( ) ( )

| |( )

min

max

∇ ∇

= 〈 + 〉 ∇
=
∑ 2 1 2∆l

l
m mY + ∇( ) .

(3.7)

If we now combine (3.5) and (3.7), we obtain an expression which is obvi-
ously of the form of (2.3) (see for example ref.27, Eq. (3.9)):

Y l
m

l
m

l l

l

F lm m l m l m
1

1

2

2 2
1 2 1 1 2 2( ) ( ) | |( )

min

max

∇ = 〈 + 〉

×

=
∑r

∇ 

















+2 1
2

1 2∆ Φl
l

l l
m m

r r
r

d
d

( ) ( ) .Y r (3.8)

There are some radially symmetric functions of considerable physical rel-
evance which produce results of remarkable simplicity if Y l

m ( )∇ is applied to
them via (3.4). The classic example is the Coulomb potential 1/r. Hobson5

showed that the irregular solid harmonic Z l
m ( )r defined in (B.7) is generated

by applying Y l
m ( )∇ to 1/r (further details can be found in Hobson’s book39,
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p. 124). In modern notation, Hobson’s result can be expressed as follows
(see for example ref.3, Eq. (4.16)):

Z Yl
m

l

l
m

l r
( )

( )
( ) !!

( ) .r = −
−

∇1
2 1

1
(3.9)

It is possible to derive this relationships differently (see for example ref.34,
Chap. 6.18), but its derivation via (3.4) is in my opinion much more
straightforward and transparent.

It is also quite easy to obtain an explicit expression for the product
Y Zl

m
l
m

1

1

2

2( ) ( )∇ r . With the help of (3.8) and (3.9), we immediately obtain the
following compact expression involving Gaunt coefficients, Pochhammer
symbols, and irregular solid harmonics (ref.27, Eq. (4.7)):

Y Zl
m

l
m

l

l l m m l m l m
1

1

2

2

1

1 2 1 2 1 1 2 2

2
1 2

( ) ( ) | |

( )
( )

∇ = 〈 + + 〉

× −

r

l l

l
l l
m m1 2

2

1 2

1 2

1 2
+

+
+

( )
( ) .Z r

(3.10)

Alternative derivations of this result are discussed (ref.23, Section 7).
In a vast majority of all LCAO-MO electronic structure calculations,

Gaussian functions are used as basis functions. Traditionally, Cartesian
Gaussian functions x y z ri j k exp ( )−α 2 with i j k, , ∈ �0 and α ∈ +� have domi-
nated, which indicates that the spherical tensor gradient operator should
be irrelevant for calculations with Gaussian basis functions. However, in re-
cent years research on molecular integrals of Gaussians has increasingly
emphasized Gaussian functions whose angular parts are spherical harmon-
ics. For these functions, Y l

m ( )∇ is again an extremely useful mathematical
tool (see for example the articles by Arakane and Matsuoka44, Chow Chiu
and Moharerrzadeh45–47, Dunlap29–33, Fieck48,49, Fortunelli and Carrravetta50,
Fortunelli and Salvetti51, Fujimura and Matsuoka52, Hu, Staufer, Birken-
heuer, Igoshine, and Rösch53, Ishida54–58, Kuang and Lin59,60, Maretis61,
Matsuoka62–66, and Saunders67.

The usefulness of Y l
m ( )∇ in connection with Gaussian functions follows at

once from the fact that exp (–αr2) is an eigenfunction of the differential op-
erator (1/r)d/dr with eigenvalue –2α. Thus, the application of Y l

m ( )∇ to
exp (–αr2) via (3.4) yields according to Fieck49 the following remarkably
compact irreducible spherical tensor of rank l:

Y Yl
m l

l
mr r( ) exp( ) ( ) exp( ) ( ) .∇ − = − −α α α2 22 r (3.11)
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A detailed discussion of the usefulness of the differential operator Y l
m

1

1 ( )∇
in the context of Gaussian functions and their multicenter integrals would
certainly be of considerable interest, but unfortunately it would clearly be
beyond the scope of this article. In addition, I cannot claim that molecular
integrals of Gaussian functions are my field of expertise. Therefore, the in-
terested reader is referred to the articles listed above.

Another class of functions, which have close ties to the differential opera-
tor Y l

m ( )∇ , are the so-called B functions which will be discussed in a de-
tailed way in Section 5.

4. FOURIER TRANSFORMATION

As discussed in Section 3, Hobson’s theorem implies that a spherical tensor
of rank l can be generated by applying Y l

m ( )∇ to a spherically symmetric
function ϕ(r) according to (3.4). If an irreducible spherical tensor Fl

m

2

2 of the
type of (2.2) also satisfies (3.5), then the simple explicit expression (3.8) for
the product Y l

m
l
mF

1

1

2

2( ) ( )∇ r can be derived via (3.4).
In principle, (3.8) should suffice for our purposes since the scalar func-

tion Φl r
2
( ) in (3.5) can according to (3.4) be obtained from the scalar func-

tion f rl2
( ) in (2.2) by repeated integration with respect to r. However, re-

peated integrations are at least potentially a source of trouble, and it is thus
desirable to express the product Y l

m
l
mF

1

1

2

2( ) ( )∇ r according to (2.3) in terms of
radial functions γ l l

l r
1 2

( ) that can be obtained by differentiating the radial
function f rl2

( ) in (2.2). That this is indeed possible can be shown most eas-
ily with the help of Fourier transformation, which will be used in its sym-
metrical form. Thus, a function f: �3 → � and its Fourier transform f are
connected by the integrals (A.2) and (A.3).

The practical usefulness of Fourier transformation is obvious, and it
would clearly be beyond the scope of this article to mention all successful
scientific applications. Let me just mention that Fourier transformation is –
as first shown by Prosser and Blanchard68 and by Geller69 – one of the prin-
cipal methods of handling molecular multicenter integrals.

For example, the convolution of two functions f, g: �3 → � can be ex-
pressed as an inverse Fourier integral (see for example ref.26, Eq. (5.11)):

f g f g( ( ) ( ) ( ) .r r r r p p pr p− ′ ′ ′ =∫ ∫ ⋅) d e di3 3 (4.1)

We immediately obtain this result if we replace in (4.1) f and g by their in-
verse Fourier integrals according to (A.3) and use the following integral rep-
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resentation of the three-dimensional delta function (see for example ref.42,
Eq. (3.16)):

δ π( ) ( )r pr p= − ⋅∫2 3 3e di . (4.2)

Six-dimensional integrals describing the Coulomb interaction of two
charge densities [f(r1)]* and g(r2) can also be expressed as three-dimensional
inverse Fourier integrals (see for example ref.25, Eq. (2.22)):

[ ( )] *
| |

( )

[ ( )

f g

p
f

r
r r R

r r r

p
R p

1
1 2

2
3

1
3

2

2

1

4

∫∫

∫

− −

=
⋅

d d

e–i

π ] * ( ) .g p pd3

(4.3)

For a proof of (4.3), we also need the Fourier transform (6.4) of the Cou-
lomb potential, which – as discussed in more details in Section 6 – holds
only in the sense of distributions.

In connection with multicenter integrals in general and with the spheri-
cal tensor gradient operator in particular, Fourier transformation suffers
from a serious limitation which must not be ignored. Classically, Fourier
transformation is defined only for functions that are absolutely integrable,
i.e., which belong to the function space L1(�3), but by means of a suitable
limiting procedure it can be extended uniquely to give a unitary map from
the Hilbert space L2(�3) of square integrable functions onto itself (ref.70,
Theorem IX.6 on p. 10). Unfortunately, not all functions of interest are
square integrable and thus possess Fourier transforms that are meaningful
in the sense of classical analysis. As discussed in more details in Section 6,
the Coulomb potential and the irregular solid harmonic, which are con-
nected via (3.9), possess Fourier transforms only in the sense of generalized
functions or distributions. For the sake of conceptual simplicity, let us tac-
itly assume that all Fourier integrals in this Section are meaningful in the
sense of classical analysis.

Fourier transformation greatly simplifies the treatment of the spherical
tensor gradient operator because of the obvious relationship

Y Yl
m l

l
m( ) ( ) .∇ =⋅ ⋅e i ei ir p r pp (4.4)

Thus, in momentum space Y l
m ( )∇ is a simple multiplicative operator with

known coupling properties. Moreover, (4.4) makes it plausible that Y l
m ( )∇ is

indeed an irreducible spherical tensor of rank l (cf. ref.34, p. 312).
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If we use in the Fourier integral (A.2) both (2.2) as well as the Rayleigh ex-
pansion of a plane wave in terms of spherical Bessel functions and spherical
harmonics (cf., e.g., ref.34, p. 442),

e ( ii± ⋅

=

∞

=−

= ±∑ ∑p r p r4
0

π ) ( ) [ ( )] * ( ) ,l
l

l
l
m

m l

l

l
mj pr Y p Y r (4.5)

we see that the Fourier transform F l
m

2

2 ( )p of the irreducible spherical tensor
Fl

m

2

2 ( )r is also a spherical tensor of rank l2 in momentum space since it can
be expressed as a spherical harmonic multiplied by a radial integral (ref.26,
Eqs (4.3) and (4.4)):

F f p Y pl
m

l l
m

2

2

2 2

2( ) ( ) ( )p p= (4.6a)

f p p r J pr f r rl
l

l l2

2

2 2

1 2 3 2

0 1 2( ) ( ) ( ) ( ) ./ /
/= − − ∞

+∫i d (4.6b)

In the same way, we obtain the following Hankel-type integral representa-
tion for the radial part f rl2

( ) or Fl
m

2

2 ( )r (ref.26, Eq. (4.5)):

f r r p J rp f p pl
l

l l2

2

2 2

1 2 3 2

0 1 2( ) ( ) ( ) ./ /
/= − ∞

+∫i d (4.7)

Let us now consider the product Y l
m

l
mF

1

1

2

2( ) ( )∇ r . With the help of (4.4) and
(A.3), we obtain the following Fourier integral representation:

Y Yl
m

l
m l

l
m

l
mF F

1

1

2

2 2

1

1

2

22 3 2( ) ( ) ( ) ( ) ( )/∇ = − ⋅∫r p pr pi e iπ d3 p . (4.8)

Next, we use the Rayleigh expansion (4.5) and replace the spherical har-
monics by Gaunt coefficients according to (C.4). This yields (ref.26, Eq.
(4.7)):

Y l
m

l
m

l l

l

F

lm m l m l m

1

1

2

2

2
1 2 1 1 2 2

( ) ( )

| |( )

min
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∇

= 〈 + 〉
=
∑

r

i l l
l
m m

l

l l

Y r

r p J rp f p p

+ +

− +∞

+
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1 1 2

1

2

1 2 3 2

0 1 2

( )

( ) ( ) ./ /

/

r

d

(4.9)
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Comparison of (2.3) and (4.9) yields the following integral representation
for the radial function γ l l

l r
1 2

( ) (ref.26, Eq. (4.8)):

γ l l
l l l l

l lr r p J rp f p p
1 2

1 1

2

1 2 3 2

0 1 2
( ) ( ) ( ) ./ /

/
= + − +∞

+∫i d (4.10)

Now, all we need is a differential operator in r that generates the integral in
(4.10) from the integral in (4.7). With the help of known properties of the
Bessel function Jv(z) or by direct differentiation techniques (see ref.26,
Section III), this can be accomplished relatively easily (ref.26, Eqs (3.29),
(4.15)–(4.18), and (4.24))

γ
σ

l l
l q q

q

l
q l l qr

l l

q
r

r

1 2

1 2
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2
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!
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=
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× 



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− − −∑ ( ) ( )
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∆ ∆∆ l l
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d
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+
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(4.16)

The abbreviations ∆l, ∆l1, ∆l2, and σ(l) are defined in (C.6)–(C.9). Obviously,
the representations (4.14) and (4.15) make sense only if either l2 ≥ l or l ≥ l2
holds.

The expressions (4.11)–(4.16) for γ l l
l r
1 2

( ) all look quite different. Neverthe-
less, their equivalence can be shown explicitly with the help of summation
theorems for generalized hypergeometric series with unit argument (see the
discussion in connection with (ref.26, Eqs (4.19)–(4.24)).

Alternative expressions for γ l l
l r
1 2

( ) as well as for more general radial func-
tions, which occur in the case of the product ∇ ∇2

1

1

2

2n
l
m

l
mFY ( ) ( )r with n ∈ �0 ,

were considered by Santos36, Bayman35, Stuart37, Niukkanen12, Weniger
and Steinborn26, and Rashid38.

The expressions (4.11)–(4.16) for γ l l
l r
1 2

( ) all have a manageable complexity
and are well suited for practical applications. Nevertheless, it is more conve-
nient to compute the product Y l

m
l
mF

1

1

2

2( ) ( )∇ r or also the more general prod-
uct ∇ ∇2

1

1

2

2n
l
m

l
mFY ( ) ( )r with n ∈ �0 via (3.8) if Φl r

2
( ) defined in (3.5) is easily

accessible and has a sufficiently simple form as in the case of the irregular
solid harmonic and the Gaussian function according to (3.9) and (3.11), re-
spectively, or in the case of B functions according to (5.9).

With the help of Fourier transformation, it is easy to obtain the explicit
expression for the product Y l

m f g( ) ( ) ( )∇ r r which could be called the Leibniz
theorem of the spherical tensor gradient operator and which was originally
derived by Dunlap (ref.29, Eq. (10)), albeit in a somewhat cryptic way. My
derivation is inspired by Grotendorst and Steinborn (ref.10, Appendix A)
who derived a more general expression involving spherical tensor gradient
operators in connection with the Fourier transform of a two-center density.

For that purpose, let us express both f and g as inverse Fourier integrals
according to (A.3) and use (4.4):

Y
Y

l
m l

m

f g f g( ) ( ) ( )
( )

( )
( ) ( )(∇ =

∇ ⋅∫∫r r p p pr p + q

2 3

3 3

π
e d di ) q (4.17)

= ∇− ⋅∫∫( ) ( )( [ ] ( ) ( ) .(2 3 3 3π e i d di )r p + q p + q p p p qY l
m f g (4.18)
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The dependence of the regular spherical harmonic on the two momentum
variables p and q can be decoupled with the help of the well known addi-
tion theorem of the regular solid harmonics (a particularly simple deriva-
tion of this addition theorem based on the the spherical tensor gradient op-
erator can be found in ref.23, Section 6):

Y l
m l

l

l

lm l

( )
( )

( ) ( )

| |

r r+ ′ =

× 〈 −

+

+ − +=
∑ 2 1 2

1 2 1 2
1

1 10

π

λ µ

λ λλ

− + 〉 ′
=−

−
−

+∑ λ µ
µ λ

λ

λ
µ

λ
µm l

mY Y( ) ( ) .r r

(4.19)

The Gaunt coefficients in this addition theorem can be expressed in closed
form (cf., e.g., ref.23, Eq. (6.5)) which unfortunately contains a typographi-
cal error: The factor (2l2 – l1 + 1) in the numerator of the square root on the
right-hand side has to be replaced by (2l2 – 2l1 + 1). In this way, we obtain
Steinborn’s factor-free version of the addition theorem of the regular solid
harmonics (ref.71, Eq. (9)).

If we now introduce (4.19) into (4.18) and use (4.4), we obtain:
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Thus, the Leibniz theorem (4.22) of the spherical tensor gradient operator
is nothing but the addition theorem (4.19) of the regular solid harmonic in
momentum space.

5. REDUCED BESSEL FUNCTIONS

In Section 3 it was shown that the application of the spherical tensor gradi-
ent operator Y l

m ( )∇ to the Coulomb potential or to a scalar Gaussian yields
remarkably compact results according to (3.9) or (3.11), respectively.

Other functions, to which the spherical tensor gradient operator can be
applied with remarkable ease, are the so-called reduced Bessel functions,
whose use in quantum chemistry was proposed by Shavitt (ref.72, Eq. (55)
on p. 15), and their anisotropic generalizations, the so-called B functions,
which was introduced by Filter and Steinborn (ref.73, Eq. (2.14)). Detailed
discussions of the mathematical properties of reduced Bessel functions and
B functions can be found in my Ph.D. thesis6 and in the Ph.D. thesis of
Homeier74.

If Kv(z) is a modified Bessel function of the second kind (ref.75, p. 66), the
reduced Bessel function is defined by (ref.76, Eqs (3.1) and (3.2))

$ ( ) ( ) ( ) ./k z z K zv
v

v= 2 1 2π (5.1)

If the order v of a reduced Bessel function is half-integral, v = n + 1/2 with
n ∈ �0 , the reduced Bessel function can be written as an exponential multi-
plied by a terminating confluent hypergeometric series 1F1 (ref.77, Eq. (3.7)):

$ ( ) ( ) ( ; ; ) ./k z F n n zn
n

n
z

+
−= − −1 2 1 12 1 2 2 2e (5.2)

The polynomial part in (5.2) was also treated independently in the mathe-
matical literature, where the notation θn(z) = e z

nk z$ ( )/+1 2 is used. Together
with some other, closely related polynomials, the θn(z) are called Bessel
polynomials78. According to Grosswald78, they are applied in such diverse
fields as number theory, statistics, and the analysis of complex electrical
networks.

The Bessel polynomials θn(z) occur also in a completely different mathe-
matical context. In the book by Baker and Graves-Morris (ref.79, p. 8) on
Padé approximants, it is remarked that Padé had shown in his seminal the-
sis80 that the Padé approximant [n/m] to the exponential function exp (z)
can be expressed as the ratio of two terminating confluent hypergeometric
series (ref.79, Eq. (2.12)):
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∈1 1

1 1
0� (5.3)

Accordingly, the diagonal Padé approximant with n = m to the exponential
function can be expressed as the ratio of two Bessel polynomials:

[ ]
( )

( )
, .n n
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nn

n

=
−

∈
θ

θ
2
2 0� (5.4)

As an anisotropic generalization of the reduced Bessel function with
half-integral order, the so-called B function was introduced by Filter and
Steinborn (ref.73, Eq. (2.14)),

B n l k r nn l
m n l

n l
m

, /( , ) [ ( ) !] $ ( ) ( ), ,α α α αr r= + > ∈+ −
−2 01
1 2 Y � . (5.5)

B functions are a fairly large class of exponentially decaying functions.
For n ∈ � they are suited to serve as trial functions in LCAO-MO calcula-
tions. Since, however, B functions have a much more complicated mathe-
matical structure than for example Slater-type functions, whose molecular
multicenter integrals functions are notoriously difficult, it is by no means
obvious that anything can be gained by using B functions instead of Slater-
type functions as basis functions. However, B functions possess a Fourier
transform of remarkable simplicity:

B Bn l
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e d-i

+ −

+ ++
−

l

n l l
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2 2 1[ ]
( ) .

α
Y ip

(5.6)

This is most likely the most consequential and certainly the most often
cited result of my Ph.D. thesis (ref.6, Eq. (7.1-6) on p. 160). Later, (5.6) was
published in ref.3, Eq. (3.7). Independently and almost simultaneously, the
Fourier transform (5.6) was also derived by Niukkanen81.

The exceptionally simple Fourier transform (5.6) gives B functions a
unique position among exponentially decaying basis functions, and it also
explains why other exponentially decaying functions like Slater-type func-
tions, bound state hydrogen eigenfunctions or other functions sets based
on generalized Laguerre polynomials can all be expressed in terms of finite
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linear combinations of B functions (details and further references can be
found in ref.43, Section IV or ref.24, Section 4).

As discussed in Section 4, Fourier transformation is one of the principal
approaches for the treatment of multicenter integrals68,69.

Thus, the simplicity of the Fourier transform (5.6) makes it plausible that
multicenter integrals of B functions can normally be evaluated more easily
than the analogous integrals of other exponentially decaying functions as
for instance Slater-type functions. For example, by inserting (5.6) into the
inverse Fourier integral on the right-hand side of (4.1), we immediately ob-
tain the following, extremely simple expression for the convolution inte-
gral of two B functions with equal scaling parameters:
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(5.7)

This expression was originally derived by Filter and Steinborn (ref.82, Eq. (4.1))
with the help of an addition theorem. The summation limits lmin and lmax
are given in (C.5), and ∆l is defined by (C.6).

In recent years, some significant progress has been achieved with respect
to molecular multicenter integrals of B functions (see for example the arti-
cles by Steinborn et al.83, and Steinborn et al.84). Particularly promising
seems to be the approach of Safouhi who – starting from the Fourier trans-
form (5.6) – converts complicated multicenter integrals of B or Slater-type
functions to multidimensional integral representations that have to be
evaluated by numerical quadrature. At first sight, this does not look like a
good idea because of the oscillatory nature of the multidimensional integral
representations, which makes the straightforward application of conven-
tional quadrature methods difficult. However, these computational prob-
lems can be overcome if the quadrature schemes are combined with suit-
able nonlinear extrapolation methods. Based on previous work of Sidi85 and
of Levin and Sidi86 on extrapolation methods for numerical quadrature
schemes, Safouhi succeeded in developing some extrapolation techniques
specially suited for his needs. This permits a remarkably efficient and reli-
able evaluation of complicated molecular multicenter integrals via oscilla-
tory (Fourier-based) integral representations (see for example the recent ar-
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ticles by Berlu and Safouhi87–89, Berlu, Safouhi and Hoggan90, Safouhi91–96,
Safouhi and Hoggan97–99 and references therein). Safouhi’s work can also be
viewed as a convincing demonstration of the practical usefulness of extrap-
olation and convergence acceleration techniques in molecular electronic
structure theory.

It follows at once from (5.6) that a B function can be expressed as an in-
verse Fourier integral according to

B
p

n l
m

n l
l
m

n l, ( , )
( )

[ ]
α α

π α
r

p
pr p=

−
+

+ −
⋅

+ +∫
2 1

2 2 2 1

3

2
e

i
di Y

. (5.8)

Comparison of (4.4) and (5.8) shows that the application of the spherical
tensor gradient operator to a scalar B function yields a nonscalar B function
(ref.6, Eq. (7.1-10) on p. 161):

B Bn l
m l

l
m

n l,
/

,( , ) ( ) ( ) ( ) ( , ) .α π α αr r= − ∇−
+4 1 2

0
0Y (5.9)

This as well as several other related results can also be deduced from known
properties of the modified Bessel function Kv(z) via (3.4) (see for example
ref.3, Eq. (4.12)):

It is also quite easy to derive an explicit expression for the product
Y l

m
n l
mB

1

2

2 2

2( ) ( ),∇ r via (3.8) since the application of higher powers of the Laplacian
∇ 2 to a B function poses no problems. It follows at once from the integral
representation (5.8) that the differential operator 1 – α–2∇ 2 of the modified
Helmholtz equation acts as a ladder operator (ref.26, Eq. (5.6)):

[ ] ( , ) ( , ) ., ,1 2 2
1− ∇ =−

−α α αB Bn l
m

n l
mr r (5.10)

As discussed in more detail in Section 6, this relationship holds also if the
indices n and l satisfy n + l < 0, i.e., for B functions that are derivatives of
the three-dimensional delta function according to (6.19).

Thus, the binomial expansion of α–2v∇ 2v in powers of 1 – α–2∇ 2 in combi-
nation with (5.10) yields (ref.26, Eq. (5.7)):

α α α−

=
−∇ = −





∑2 2

0

1v v
n l
m t

t

v

n t l
mB

v

t
B, ,( , ) ( ) ( , ) .r r (5.11)

If we now combine (3.8) with (5.11), we immediately obtain the following
compact linear combination of Gaunt coefficients, binomial coefficients,
and B functions (ref.26, Eq. (6.25)):
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(5.12)

It follows from the summation limits (C.5) that ∆l defined in (C.6) is either
a positive integer or zero.

As already remarked above, all the commonly used exponentially decay-
ing functions like Slater-type functions, bound state hydrogen eigen-
functions or other function sets based on generalized Laguerre polynomials
can all be expressed in terms of finite linear combinations of B functions
(see for example ref.43, Section IV or ref.24, Section 4). Thus, it follows from
(5.12) that the product of a spherical tensor gradient operator and one of
these exponentially decaying functions can be expressed as a finite linear
combination of B functions.

6. SPHERICAL DELTA FUNCTIONS

Classically, the domain of the spherical tensor gradient operator consists of
the differentiable functions f: �3 → �, although we are in practice only in-
terested in differentiable irreducible spherical tensors of the type of (2.2).
However, as for example argued in Dirac’s classic book (ref.100, §15), the
functions defined in the sense of classical analysis do not suffice in quan-
tum theory. It is necessary to use also more general mathematical objects,
the so-called generalized functions or distributions, whose mathematical
theory was rigorously formulated by Schwartz (see ref.101 and references
therein).

The best known nonclassical generalization of a function f: �3 → � is the
three-dimensional Dirac delta function that can be defined as a generalized
solution of the Poisson equation of a unit point charge (ref.102, Eq. (1.31)):

∇ = −2 1
4

r
π δ( ) .r (6.1)

This Poisson equation also expresses the well known fact that the Coulomb
potential is the Green’s function of the three-dimensional Laplace equation.

The prototype of a distribution, which is also an irreducible spherical ten-
sor of rank l, is the so-called spherical delta function (see, e.g., ref.103, Eq. (30)):

δ δl
m

l

l
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l
( )

( )
( ) !!

( ) ( ) .r r= −
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∇1
2 1

Y (6.2)
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The spherical delta function can also be obtained by applying the Laplacian
to an irregular solid harmonics (see for example ref.103, Eq. (29)):

∇ = −2 4Z l
m

l
m( ) ( ) .r rπ δ (6.3)

This follows at once from (3.9), (6.1), (6.2), and the fact that ∇ 2 and Y l
m ( )∇

commute. Comparison of (6.1) and (6.3) shows that the spherical delta
function can be viewed as a generalized solution of the Poisson equation of
a unit multipole charge.

The properties of generalized functions of the type of the spherical delta
function can be understood most easily with the help of Fourier transfor-
mation. As already mentioned in Section 4, Fourier transformation is de-
fined in the sense of classical analysis only for functions that are absolutely
integrable, i.e., which belong to the function space L1(�3). By means of a
suitable limiting procedure, Fourier transformation can be extended
uniquely to give a unitary map from the Hilbert space L2(�3) of square-
integrable functions onto itself (see, e.g., ref.70, Theorem IX.6 on p. 10).
A further extension of Fourier transformation to the space of tempered dis-
tributions is also possible (see, e.g., ref.70, Theorem IX.2 on p. 5).

The extensibility of Fourier transformation to nonclassical function
spaces is very important for our purposes. For example, the Coulomb po-
tential is neither absolutely integrable nor square-integrable. Nevertheless,
it is possible to define its Fourier transform in the sense of distributions
(ref.104, Eq. (2) on p. 194):
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1 2
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This relationship makes it possible to convert multicenter integrals, which
describe the Coulomb interaction of classical or nonclassical charge densi-
ties, into momentum space integrals according to (4.3). This is a common
approach in the case of exponentially decaying basis functions (see, e.g.,
ref.25 or ref.11 and references therein).

In the same way, we obtain the Fourier transform of the irregular solid
harmonic, which again holds in the sense of distributions (ref.25, Eq.
(3.11)):
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It is also quite instructive to study the Fourier transforms of distributions
as for instance the three-dimensional delta function or the spherical delta
function. If we set f(r – r′) = δ(r – r′) in the convolution integral (4.1), we see
that the Fourier transform of the delta function is a constant:

δ π δ π( ) ( ) ( ) ( ) ./ /p r rp r= =− ⋅ −∫2 23 2 3 3 2e d–i (6.6)

Similarly, we find that the Fourier transform of the spherical delta function
is essentially a regular solid harmonic in momentum space:

δ π δ
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m
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m ip
(6.7)

In physics, it is common to introduce the three-dimensional delta func-
tion via the Poisson equation (6.1). Both the Poisson equation (6.1) and its
anisotropic generalization (6.3) follow from the Fourier transforms (6.4)
and (6.5), respectively. We only have to take into account that the function
1/p2, which occurs in both (6.4) and (6.5), is canceled by the Laplacian ∇ 2,
whose Fourier transform is –p2.

It is, however, just as well possible to introduce the there-dimensional
delta function as well as the spherical delta function via the differential op-
erator 1 – α–2∇ 2 of the modified Helmholtz equation, whose Fourier trans-
form is given by [α2 + p2]/α2. This follows at once from that fact that the
Yukawa potential105, which is an exponentially screened Coulomb poten-
tial with screening parameter α, is also a special B function according to

e −

−= =
α

α α π α α
r

r
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/
,1 2

1 2
0 0
04 r (6.8)

Obviously, the Yukawa potential approaches the Coulomb potential in the
limit of vanishing screening, i.e., for α → 0.

If we set n = l = m = 0 in (5.6), we essentially obtain the Fourier transform
of the Yukawa potential:
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Next, we use (4.1) to compute the convolution of a relatively arbitrary func-
tion f: �3 → � with the Yukawa potential (ref.26, Eq. (6.9)):
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If we now apply the differential operator 1 – α–2∇ 2 to the convolution inte-
gral, interchange integration and differentiation, and use (5.10), we see that
B B ,− ∇1 0

0 2 2
0 0
01,

–( , – ( ,α α αr r) = [ ] ) is proportional to the three-dimensional
delta function (ref.26, Eq. (6.10)):
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We thus obtain the following exponentially screened variant of the Poisson
equation (6.1):

[ ] ( , )
( )

) .,

/

1
42 2

0 0
0

1 2

3
− ∇ =−α α π

α
δB r r( (6.12)

This relationship can also be expressed in terms of the Yukawa potential:

[ ] ) .α π δ
α

2 2 4− ∇ =
−e

(
r

r
r (6.13)

For α = 0, we obtain the Poisson equation (6.1).
The screened Poisson equation (6.13) expresses the well-known fact that

the Yukawa potential is the Green’s function of the modified Helmholtz
equation (see, e.g., ref.106, Table 16.1 on p. 912).

An anisotropic generalization of the approach described above is also
possible. If we set n = –l in (5.9), we see that the application of the spherical
tensor gradient operator to the Yukawa potential yields the so-called modi-
fied Helmholtz harmonic (ref.27, Eq. (6.9)):
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In the limit of vanishing screening, the modified Helmholtz harmonic ap-
proaches an irregular solid harmonic (ref.25, Eq. (3.10))

Z l
m l

l l
ml B r( ) [( ) !!] lim[ ( , )] .,r = − −

→

+
−2 1 1

0

1

α
α α (6.15)

If we set n = –l in (5.6), we obtain the Fourier transform of the modified
Helmholtz harmonic (ref.3, Eq. (A.1)):
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Both the Fourier integral producing this relationship as well as the inverse
Fourier integral representation for B l l

m
− , ( ,α r) do not exist in the sense of clas-

sical analysis. It was, however, shown that the classically divergent Fourier
integral representation for B l l

m
− , ( ,α r) can be regularized by employing a suit-

able rational cutoff function (ref.3, Appendix).
If we now proceed as in the case of (6.11) and also use (4.4), we see that

B Bl l
m
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m

− −∇, ,( , ( ,α α αr r) = [1 – ] )–2 2 is proportional to the spherical delta function
(ref.26, Eqs (6.17)–(6.19)):
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We thus obtain the following exponentially screened variant of the aniso-
tropic Poisson equation (6.3):
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In view of this relationship and also because of (5.10), it makes sense to de-
fine a distributional B function as the following derivative of the
three-dimensional Dirac delta function (ref.26, Eq. (6.20)):
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The fact that the distributional B function B l l
B
− −1, is proportional to the

spherical delta function can also be seen by setting n1 = –l1 – 1 in the con-
volution integral (5.7). Then, we obtain apart from a different prefactor the
expression (5.12) for the product Y l

m
n l
mB

1

1

2 2

2( ) ( , ),∇ α r .
The distributional nature of some B functions follows also from the fact

that the Fourier transforms (5.6) of B functions satisfy, for all n ∈ � and for
all l ∈ �0, the following functional equations (ref.26, Eqs (6.21)–(6.23)):
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These functional equations in momentum space show that there is an inti-
mate relationship between B functions, the differential operator of the
modified Helmholtz equation, the spherical tensor gradient operator, and
the three-dimensional delta function.

There is a simple and intuitive interpretation of distributional B func-
tions. Because of the factorial (n + l)! in the denominator on the right-hand
side of (5.5), B functions are defined in the sense of classical analysis only if
n + l ≥ 0 holds. However, the definition of a B function remains meaningful
even for n + l < 0. If r ≠ 0, the value of B k l l

m
− − , (r) with k ∈ � is because of the

singular factorial (–k)! = Γ(–k + 1) zero, but for r = 0, its value is ∞/∞ and
therefore undefined. Thus, the mathematical nature of a B function with
n + l < 0 as well as its value for r = 0 has to be analyzed with the help of
suitable limiting procedures.

7. ADDITION THEOREMS

In many subfields of physics and physical chemistry – for example in elec-
trodynamics102, in classical field theory107, or in the theory of inter-
molecular forces108 – an essential step towards a solution of the problem
under consideration consists in a separation of variables.

Principal tools, which can accomplish such a separation of variables, are
so-called addition theorems. These are expansions of a given function
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f(r ± r′) with r, r′ ∈ �3 in products of other functions that only depend on
either r or r′.

In view of the importance of addition theorems, it is not surprising that
there is a very extensive literature. Consequently, any attempt to provide a
reasonably complete bibliography would clearly be beyond the scope of
this article. The interested reader is referred to the long, but nevertheless in-
complete lists of references in refs23,24.

Addition theorems have played a major role in my own research. I first
applied addition theorems for the evaluation of some multicenter integrals
of B functions in my M.S. thesis109, which was published in condensed
form in ref.110. In my Ph.D. thesis6 and also afterwards, I preferred Fourier
transformation for the evaluation of multicenter integrals of B functions,
but I later worked on the derivation of addition theorems23,24,27,28,43,111.

In atomic or molecular calculations, we are predominantly interested in
irreducible spherical tensors of the type of (2.2). Moreover, the convenient
orthonormality of the spherical harmonics makes it highly desirable that
the functions of either r or r′, which occur in the expansion of f(r ± r′), are
also irreducible spherical tensors. Thus, the addition theorems, we are inter-
ested in, are expansions in terms of spherical harmonics with arguments θ,
φ = r/r and θ′, φ′ = r′/r′, respectively.

The best known example of such an addition theorem is the Laplace ex-
pansion of the Coulomb potential in terms of spherical harmonics:

1
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1
2 10| |
( )

[ ( )] * ( ) ,
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< >= ′ = ′| min( , ) , | | max( , ) .r r r rr

(7.1)

The Laplace expansion leads to a separation of the variables r and r′. How-
ever, its right-hand side depends on r and r′ only indirectly via the vectors
r< and r> which satisfy |r<| < |r>|. Hence, the Laplace expansion has a two-
range form, depending on the relative size of r and r′. This is a complica-
tion which occurs frequently among addition theorems. As discussed in
more details in refs23,24, addition theorems have a two-range form if they
are pointwise convergent three-dimensional Taylor expansions and if the
function f(r ± r′), which is to be expanded, is not analytic at the origin.

The undeniably troublesome two-range form of an addition theorem can
be avoided if f: �3 → � belongs to the Hilbert space L2(�3) of square-
integrable functions or to other, closely related function spaces such as
Sobolev spaces that are proper subspaces of L2(�3) (cf., e.g., refs43,111–113 and
references therein). For the sake of simplicity, let us assume that a discrete
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function set { ( )}, , ,Ψn l
m

n l mr is complete and orthonormal in the Hilbert space
L2(�3). Then, an addition theorem for f(r ± r′), which converges in the
mean with respect to the norm of L2(�3), can be derived by expanding f in
terms of the functions { ( )}, , ,Ψn l

m
n l mr :

f C fn l
m

nlm
n l
m( ) ( ; ) ( ), ,r r r r± ′ = ′∑ Ψ (7.2a)

C f fn l
m

n l
m

, ,( ; ) [ ( )] * ( ) .′ = ± ′∫r r r r rΨ d3 (7.2b)

Such an expansion is a one-range addition theorem since the dependence
on r is entirely contained in the functions Ψn l

m
, ( )r , whereas r′ occurs only in

the expansion coefficients C fn l
m

, ( ; )′r , which are overlap integrals. With mini-
mal modifications, this approach works also if the functions { ( )}, , ,Ψn l

m
n l mr are

complete and orthonormal in a suitable Sobolev space.
At first sight, it looks as if one-range addition theorems of the type of

(7.2) are clearly superior to two-range addition theorems, but a balanced as-
sessment of their relative merits is not so easy. Firstly, one-range addition
theorems usually have a more complicated structure than two-range addi-
tion theorems (typically, one-range addition theorems contain one addi-
tional infinite summation). Secondly, one-range addition theorems nor-
mally converge only in the mean with respect to the norm of the Hilbert
space L2(�3), but not necessarily pointwise. In some cases, this can lead to
convergence problems. The probably most severe disadvantage is that the
approach sketched above works only if f is an element of a suitable Hilbert
or Sobolev space. Many functions of considerable practical importance such
as the Coulomb potential or the irregular solid harmonic do not belong to
L2(�3), let alone to a suitable Sobolev space. Therefore, it is not possible to
derive one-range addition theorems by expanding them in terms of func-
tion sets that are complete and orthonormal with respect to a scalar prod-
uct that involves an integration over the whole �3.

In this article, I will only discuss addition theorems that converge
pointwise, i.e., which can be viewed to be three-dimensional Taylor expan-
sions. Moreover, I will concentrate on addition theorems that can be de-
rived with the help of the spherical tensor gradient operator Y l

m ( )∇ .
As discussed in Section 3, the irregular solid harmonic Z l

m ( )r can accord-
ing to (3.9) be obtained by applying Y l

m ( )∇ to the Coulomb potential. Thus,
it should be possible to derive the addition theorem of the irregular solid
harmonic by applying either Y l

m ( )∇ < or Y l
m ( )∇ > to the Laplace expansion

(7.1). As shown (in ref.27, Section IV), this is indeed possible. Moreover, it

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Spherical Tensor Gradient Operator 1253



was shown in ref.27, Sections V and VI that the addition theorems of the
Helmholtz and the modified Helmholtz harmonics can also be derived by
applying either Y l

m ( )∇ < or Y l
m ( )∇ > to the simpler addition theorems of the

corresponding scalar functions. It is also possible to derive the addition the-
orem of B functions by applying the spherical tensor gradient operator to
the addition theorem of the reduced Bessel functions (ref.28, Section V).

The approach described above requires that for a given irreducible tensor
a scalar function can be found which satisfies (3.5) and which possesses a
suitable addition theorem. This obviously limits the practical usefulness of
this approach. It is, however, possible to derive addition theorems of essen-
tially arbitrary irreducible spherical tensors from the scratch with the help
of the spherical tensor gradient operator.

As is well known, addition theorems can formally be obtained by making
three-dimensional Taylor expansions (see, e.g., ref.34, p. 181):

f
n

f f
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r rr+ ′ = ′ ⋅ ∇ =
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∞
′ ⋅∇∑
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Thus, the translation operator

e e e e′ ⋅∇ ′ ′ ′=r x x y y z z∂ ∂ ∂ ∂ ∂ ∂/ / / (7.4)

generates f(r + r′) by making a three-dimensional Taylor expansion of f
around r with shift vector r′. Moreover, the variables r and r′ are separated.
Thus, the series expansion (7.3) is indeed an addition theorem.

We could also expand f around r′ and use r as the shift vector. This would
produce an addition theorem for f(r + r′) in which the roles of r and r′ are
interchanged. Both approaches are mathematically legitimate and equiva-
lent if f is analytic at r, r′, and r + r′ for essentially arbitrary vectors r,
′ ∈r � 3 . Unfortunately, this is normally not true. Most of the functions, that

are of interest in the context of atomic and molecular quantum mechanics,
are either singular at the origin or are not analytic at the origin. Obvious
examples are the Coulomb potential, which is singular at the origin, or the
1s hydrogen eigenfunction, which possesses a cusp at the origin. In fact, all
the commonly used exponentially decaying functions as for example Slater-
type functions or also B functions are not analytic at the origin.

The reason for the non-analyticity is that the three-dimensional distance
r = [x2 + y2 + z2]1/2 is not analytic with respect to x, y, and z at the origin
r = 0. This implies that all odd powers r2n+1 with n ∈ �0 are also not analytic
at the origin (cf. also the discussion related to ref.43, Eq. (5.9)). In contrast,
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r2 = x2 + y2 + z2 and the regular solid harmonic Y l
m ( )r are analytic since they

are polynomials in x, y, and z. Consequently, a 1s Gaussian function
exp (–αr2), which possesses an expansion in even powers r2n, is analytic at
r = 0, but a 1s Slater-type function exp (–αr) is not.

Thus, for the derivation of addition theorems of functions that are not
analytic at the origin we have to use the translation operator in the follow-
ing form,

f
n

f f
n

n

( )
( )

!
( ) ( )r r

r
r rr

< >
< >

=

∞

>
⋅∇

>+ =
⋅ ∇

=∑ < >

0

e (7.5)

where |r<| < |r>|. In this way, the convergence of the three-dimensional
Taylor expansion is guaranteed provided that f is analytic everywhere ex-
cept possibly at the origin. Thus, the non-analyticity of B functions and of
all the other commonly occurring exponentially decaying functions at the
origin has a far-reaching consequence: their pointwise convergent addition
theorems must have a two-range form in order to guarantee convergence
(see also24 and references therein).

From a practical point of view, the translation operator e <r ⋅∇ > in its Carte-
sian form does not seem to be a particularly useful analytical tool. We are
usually interested in addition theorems of irreducible spherical tensors,
which are defined in terms of the spherical polar coordinates r, θ, and φ.
Differentiating them with respect to the Cartesian components x, y, and z
would lead to extremely messy expressions and to difficult technical prob-
lems. Thus, it is tempting, but nevertheless superficial to conclude that the
translation operator e <r ⋅∇ > provides only a formal solution to the problem of
separating the variables r and r′ of a function f(r + r′).

The crucial step, which ultimately makes the Taylor expansion method
practically useful, is the expansion of the translation operator e <r ⋅∇ > in
terms of differential operators that are irreducible spherical tensors. The
starting point is an expansion of exp (a·b) with a, b ∈ �3 in terms of modi-
fied Bessel functions and Legendre polynomials (ref.75, p. 108):

e ea b⋅
+

=

∞

= = 





+∑ab
l

l
lab

l I ab Pcos
/

/( ) ( ) (θ π
2

2 1
1 2

1 2
0

cos ) .θ (7.6)

Next, the series expansion for the modified Bessel function Il+1/2 (ref.75,
p. 66) is introduced into (7.6), and spherical harmonics are introduced with
the help of the so-called addition theorem of the Legendre polynomials
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(see, e.g., ref.34, p. 303). This yields the following expansion of ea·b in terms
of regular solid harmonics and even powers of the vectors a and b:

e
!

a b a b
a b⋅

=−=

∞

= ∑∑2
2 1 20

2 2

2
π [ ( )] * ( )

( )
Y Yl

m

m l

l

l
l
m

k k

l+ k k l kk + +=

∞

∑
10

. (7.7)

The powers a2k and b2k are irreducible spherical tensors of rank zero, and
the solid harmonics are tensors of rank l.

The expansion (7.7) is obtained from (7.6) by rearranging the Cartesian
components of the vectors a and b. Accordingly, it holds for essentially ar-
bitrary vectors a, b ∈ �3, and we can choose a = r< and b = ∇ >:

e r r
r< >⋅∇

=−=
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< >
< >= ∇

∇∑∑2
20
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π [ ( )] * ( )Y Yl

m

m l

l

l
l
m

k k

l+ k k l kk !( )
.

1 2 10 + +=

∞

∑ (7.8)

It seems that this expansion was first published by Santos (ref.36, Eq. (A.6)),
who emphasized that this expansion should be useful for the derivation of
addition theorems, but apparently never used it for that purpose.

It follows from the expression (B.2) of the Laplacian ∇ 2 in spherical polar
coordinates and from the tensorial nature of the spherical tensor gradient
operator (cf. (2.3) and the numerous expressions for γ l l

l

1 2
( )r given in Section 4)

that in (7.8) we only have to do differentiations with respect to the radial
variable r>. This greatly simplifies practical applications. In ref.23, it was
shown that starting from the expansion (7.8) the addition theorems of the
Coulomb potential, the regular and irregular solid harmonics, and the
Yukawa potential can be derived quite easily, and in ref.24, several different
forms of the addition theorem of the B functions was derived in this way.

As a further demonstration of the usefulness of the expansion (7.8) of the
translation operator in terms of irreducible spherical tensors I will now de-
rive an addition theorem of the function r v

l
mY ( )r with v ∈ �.

Our starting point is the following relationship which follows at once
from (3.4):

r
v

rv
l
m

l
l

l
m v lY Y( )

( )
( ) .r =

+
∇ +1

2 1 2
2 (7.9)

If we combine this with (7.8) and linearize the spherical tensor gradient op-
erators according to (3.7), we obtain:
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The abbreviations ∆l, ∆l1, and ∆l2, which will be used in the following for-
mulas and which are in all cases either zero or a positive integer, are de-
fined by (C.6)–(C.8).

In the next step, we use (7.8) once more to obtain

Y Yl
m m v l l
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l
m mr l v r
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Introducing this into (7.10) yields:
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Now, the only thing that remains to be done is the application of the
powers ∇ >

+2 2 2k l∆ of the Laplacian to r>
v l l

l
m m+ +

>
2 2 2

2

1– ( )Y r . For that purpose, we
use the following expression which can be deduced easily from (B.2):

∇ = + +





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2
2

2

2 2ψ ∂
∂

∂
∂

ψ( ) ( ) ( ) ( ) .r
r

l
r r

rl
m

l
mY Yr r (7.13)

Here, ψ(r) is a scalar function. If we set ψ(r) = rσ with σ ∈ �, we find:

∇ = − − + + −2 24 2 2 1 2r l rl
m

l
mσ σσ σY Y( ) ( )( [ ] ) ( ) .r r (7.14)

Iterating this relationship n times yields:

∇ = − − + + −2 24 2 2 1 2n
l
m n

n n
n

l
mr l rσ σσ σY Y( ) ( ) ( [ ] ) ( ) .r r (7.15)

Thus, we obtain for the remaining differentiations:
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With the help of some essentially straightforward algebra, it can be shown
that the k summation in (7.12) can be expression by a Gaussian hyper-
geometric series 2F1 (for its definition, see, e.g., ref.75, p. 37), and we finally
obtain the following addition theorem:
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The addition theorem (7.17) contains many simpler addition theorems as
special cases. For example, if we set in (7.17) l = m = 0, we obtain the addi-
tion theorem of the corresponding scalar function:

| | ( )
( )

( )

,

r r< > >
+

=

∞

+ = −
−

× − − −

∑v vr
v

F
v v

4 1
2

3 2

2
2

1

0

2 1

π

λ

λ

λ

λ

λ

1
2

2 3
2

2

2
; ;

[ ( )] * ( ) .

λ

λ
µ

µ λ

λ

λ
µ

+







×

<

>

=−
< >∑

r

r

Y Zr r

(7.18)

Of course, we could also go the other way around: We could proceed as in
ref.27 and construct the addition theorem (7.17) by applying either Y l

m ( )∇ <

or Y l
m ( )∇ > to (7.18).
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If we set in (7.18) v = –1, we only need (1/2)λ/(3/2)λ = 1/(2λ + 1) as well as

2F1(λ + 1/2, 0; λ + 3/2; r<
2 /r>

2 ) = 1 to obtain the Laplace expansion (7.1) of
the Coulomb potential.

If we set in (7.18) v = 2n with n ∈ �0, the λ summation terminates after
λ = n because of the Pochhammer symbol (–n)λ. In addition, the hyper-
geometric series 2F1 in (7.18) terminates to become a polynomial of degree
n – λ in r<

2 /r>
2 . Moreover, r2n is a polynomial in x, y, z and thus analytic. Ac-

cordingly, a distinction between r< and r> is not necessary and the addition
theorem has a one-range form.

A detailed analysis of all special cases of the addition theorem (7.17)
would clearly be beyond the scope of this article (see also ref.114, p. 168).
Here, one must not forget that the emphasis of this Section is not on the
derivation of the addition theorem (7.17). Rather, it is my hope that the
fairly effortless derivation of this addition theorem convinces the reader
that the expansion (7.8) of the translation operator in terms of irreducible
spherical tensors is indeed a highly useful analytical tool. Of course, a
sceptical reader may well argue that it is unlikely that convenient explicit
expression for the necessary radial differentiations of arbitrary order can al-
ways be found, as it was the case with (7.17). This is certainly true. But even
if we can only do the differentiations explicitly up to a finite maximum or-
der, the tensorial expansion (7.8) permits at least the construction of ap-
proximations to addition theorems. Computer algebra systems like Maple
or Mathematica should be helpful in this respect.

8. SUMMARY AND CONCLUSIONS

The regular solid harmonic Y l
m l

l
mr Y( ) ( , )r = θ φ is according to (B.12) a homo-

geneous polynomial of degree l in the Cartesian components of r. Thus, it
makes sense to define the differential operator Y l

m ( )∇ via (2.1), i.e., by re-
placing the Cartesian components of r in (B.12) by the Cartesian compo-
nents of ∇ .

The spherical tensor gradient operator Y l
m ( )∇ is an irreducible spherical

tensor of rank l. This is a very consequential fact. Firstly, its application to
a scalar function, which is an irreducible spherical tensor of rank 0, must
produce an irreducible spherical tensor of rank l. This follows at once from
the simplified version (3.4) of Hobson’s theorem which is discussed in
Section 3. With the help of Hobson’s theorem, it is also possible to derive
the compact explicit expression (3.8) for the product Y l

m
l
mF

1

1

2

2( ) ( )∇ r , where
Fl

m

2

2 is an irreducible spherical tensor with nonzero rank l2 of the type of
(2.2) that also satisfies (3.4). Secondly, the structure of products of the type
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of Y l
m

l
mF

1

1

2

2( ) ( )∇ r according to (2.3) can be understood completely on the
basis of the usual coupling rules of angular momentum theory. Accord-
ingly, the angular parts of such a product can be expressed in terms of
Gaunt coefficients and spherical harmonics. Moreover, the radial parts of
Y l

m
l
mF

1

1

2

2( ) ( )∇ r and of Fl
m

2

2 ( )r are connected by relationships which only in-
volve differentiations with respect to the radial variable r. It is this property
which makes the spherical tensor gradient operator a practically useful ana-
lytical tool.

Fourier transformation is one of the principal techniques for the evalua-
tion of molecular multicenter integrals. It is also extremely useful in con-
nection with the spherical tensor gradient operator. Under Fourier transfor-
mation, the differential operator Y l

m

1

1 ( )∇ produces a regular solid harmonic
Y l

m

1

1 ( )ip in momentum space. In this way, we can easily understand the
tensorial nature of Y l

m

1

1 ( )∇ . Moreover, many analytical manipulations can
be done more conveniently in the momentum than in the coordinate rep-
resentation.

There are some scalar functions of physical interest which produce partic-
ularly compact results if Y l

m

1

1 ( )∇ is applied to them. Examples are the
Coulomb potential, which produces an irregular solid harmonic according
to (3.9), or the 1s Gaussian function, which produces a spherical Gaussian
function according to (3.11). Another class of scalar functions, to which
Y l

m

1

1 ( )∇ can be applied with remarkable ease, are the so-called reduced Bessel
functions defined in (5.1) and their anisotropic generalizations, the so-
called B functions defined in (5.5). These functions, which have played
a major role in my own research, are discussed in Section 5. Application
of the spherical tensor gradient operator to a scalar B function simply
produces a nonscalar B function according to (5.9), and the product
Y l

m
n l
mB

1

1

2 2

2( ) ( , ),∇ α r can according to (5.12) be expressed by a simple linear
combination of B functions. The simplicity of both (5.9) and (5.12) follows
directly from the very simple Fourier transform (5.6) of B functions, which
gives them an exceptional position among exponentially decaying basis
functions.

Classically, the domain of the spherical tensor gradient operator consists
of the differentiable functions f: �3 → �. However, as discussed in Section
6, it makes sense to apply Y l

m ( )∇ also to distribution or generalized func-
tions. This produces mathematical objects like the spherical delta function
δl

m ( )r , which is defined by (6.2) and which can be viewed as a generalized
solution of the Poisson equation (6.3) of a unit multipole charge. With the
help of Fourier transformation, the nature of the spherical delta function
can be made transparent, and we can also understand easily why the Pois-
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son equation (6.1) holds, or – to put it differently – why convolution with
the Coulomb potential and application of the Laplace operator are inverse
operations. An essentially identical approach works also in the case of B
functions. It follows from (5.10) or also from the functional equations
(6.20) that the differential operator 1 – α–2∇ 2 of the modified Helmholtz
equation can be viewed as a kind of lowering operator for B functions.
Since the Yukawa potential exp (–αr)/r is according to (6.8) proportional to
the B function B0 0

0
, ( , )α r , it turns out that convolution with the Yukawa po-

tential and the application of the differential operator 1 – α–2∇ 2 are inverse
operations according to (6.11).

In many subfields of physics and physical chemistry, an essential step to-
wards a solution of the problem under consideration consists in a separa-
tion of variables. Addition theorems, which are discussed in Section 7, are
principal tools to accomplish such a separation. As is well known, addition
theorems can be obtained according to (7.3) by applying the translation op-
erator e ′ ⋅∇r to a function f(r). However, in atomic and molecular electronic
structure calculations, we are predominantly interested in irreducible spher-
ical tensors of the type of (2.2), and the convenient orthonormality of the
spherical harmonics makes it highly desirable that the functions, which oc-
cur in the addition theorem, are also irreducible spherical tensors of the
type of (2.2). Accordingly, the translation operator in its Cartesian form
(7.4) is not suited for our needs, since its use would lead to enormous tech-
nical problems. It is a much better idea to express the translation operator
in terms of irreducible spherical tensors according to (7.8). The feasibility of
this approach is demonstrated by deriving the addition theorem of the
function r v

l
mY ( )r with v ∈ R.

Let me conclude this article by some personal remarks. There can be no
doubt that Y l

m ( )∇ is a useful analytical tool since its application to a scalar
function produces an irreducible spherical tensor of rank l. This is a highly
advantageous feature, because now it is in principle sufficient to consider
only multicenter integrals of scalar functions. Higher angular momentum
states can be generated by differentiation with respect to the nuclear coor-
dinates. Often, this is simpler that the direct derivation of explicit expres-
sions for integrals of nonscalar functions. This approach has the additional
advantage that it facilitates the use of computer algebra systems like Maple
or Mathematica, whose systematic utilization I wholeheartedly recom-
mend. The completely symbolic treatment of complicated multicenter
integrals is still too difficult for computer algebra systems, but they are al-
ready now very well suited for doing complicated differentiations.
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Nevertheless, one should never forget that a nice explicit expression for a
multicenter integral does not necessarily permit its efficient and reliable
evaluation. Already during the process of deriving an explicit expression,
one should always take numerical aspects into account, because they ulti-
mately decide whether a given formula is practically useful or not. Unfortu-
nately, this is more easily said than done. Thus, the ability to skillfully ma-
nipulate complicated mathematical expressions does not guarantee success
in the integral business. It is also necessary to have a detailed knowledge of
numerical analysis.

For example, during the work for my Ph.D. thesis6, series expansions for
multicenter integrals played a major role. Unfortunately, it often happened
that series expansions converged quite slowly (see, e.g., ref.77, Table II). In
principle, it is a fairly obvious idea to try to speed up the convergence of
these expansions with the help of series transformations, but during my
Ph.D. thesis I only knew the linear series transformations described in the
classic book by Knopp115, which did not accomplish much. At that time,
I was completely ignorant of the more modern and more effective compu-
tational tools such as Padé approximants or other nonlinear transforma-
tions, which often accomplish spectacular improvements of convergence.

The situation changed radically when I did postdoctoral work with Prof.
Jiří Čížek at the Department of Applied Mathematics of the University of
Waterloo. There, I worked on distributive expansions of a plane wave43,
which converge weakly with respect to the norm of the Hilbert space L2(�3)
or the Sobolev space W2

1( ) (�3). My second research topic in Waterloo – the
summation of factorially divergent power series as they for instance occur
as asymptotic expansions for special functions or in perturbation expan-
sions of quantum physics – was in the long run far more consequential, al-
though I did not accomplish anything worth publishing during my stay in
1983.

After my return to Regensburg, I tried to apply nonlinear transformations
also to slowly convergent series expansions for multicenter integrals. In
some cases, remarkable improvements of convergence were observed116–120.

In order to understand better the power as well as the limitations of non-
linear sequence transformations, I also worked on their theoretical proper-
ties. As a by-product, I was able to derive several new transformations. The
majority of these transformations was published in my long article121,
where also efficient algorithms for the computation of sequence transfor-
mations as well as theoretical error estimates and convergence properties
are discussed. More recent activities are described in the articles122–126.
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Thus, it is probably justified to claim that numerical mathematics ulti-
mately profited via cross-fertilizations from the convergence problems
which I encountered. My personal experience highlights the central impor-
tance of a functioning communication between mathematicians and scien-
tists. Generalists like Prof. Josef Paldus, who is at home both in mathemat-
ics and in physical and theoretical chemistry, help to overcome the current
communication problems and thus do an invaluable service to the scien-
tific community.

APPENDIX

A. Terminology and Definitions

For the set of positive and negative integers, I write � = {0, ±1, ±2, ...}, for the
set of positive integers, I write � = {1, 2, 3, ...}, and for the set of non-negative
integers, I write �0 = {0, 1, 2, ...}. The real and complex numbers and the set
of three-dimensional vectors with real components are denoted by �, �,
and �3, respectively.

For the commonly occurring special functions of mathematical physics I
use the notation of Magnus, Oberhettinger, and Soni75 unless explicitly
stated otherwise.

Double factorials are defined according to

( ) !! ,2 2 4 2n n n= ⋅ ∈L � (A.1a)

( ) !! ( ) ,2 1 1 3 2 1n n n− = ⋅ − ∈L � (A.1b)

0 1 1 1!! !! ( ) !! .= = − = (A.1c)

Fourier transformation is used in its symmetrical form, i.e., a function f:
�3 ∈ � and its Fourier transform f are connected by the integrals

f f( ) ( ) ( )/p r rp r= − − ⋅∫2 3 2 3π e di (A.2)

f f( ) ( ) ( ) ./r p pr p= − ⋅∫2 3 2 3π e di (A.3)
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B. Spherical Harmonics

Normally, the spherical harmonics Yl
m ( , )θ φ are introduced as the simultane-

ous normalized eigenfunctions of the orbital angular momentum operator
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which is essentially the angular part of the three-dimensional Laplacian in
spherical polar coordinates,

∇ = −2
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and

$ .Lz = i
∂
∂φ

(B.3)

This determines Yl
m ( , )θ φ up to an arbitrary phase. If we for instance choose

the phase convention of Condon and Shortley (ref.127, Chap. III.4), we ob-
tain the following explicit expression (ref.34, p. 69):
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Here, Pl
m| | (cos )θ is an associated Legendre polynomial (ref.128, p. 155):
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Alternative phase conventions for the spherical harmonics are discussed
(ref.129, p. 17).

The spherical harmonics Yl
m ( , )θ φ are often called surface harmonics be-

cause the angles θ and φ characterize a point r/r on the surface of the three-
dimensional unit sphere. In the literature, it is common to introduce the
so-called regular and irregular solid harmonics

Y l
m l

l
mr Y( ) ( , )r = θ φ , (B.6)

Z l
m l

l
mr Y( ) ( , ) .r = − −1 θ φ (B.7)
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Both Y l
m and Z l

m are defined for arbitrary vectors r ∈ �3. Moreover, it is easy
to show that the regular solid harmonics are for all r ∈ �3 solutions of the
homogeneous three-dimensional Laplace equation

∇ = + +








 =2

2

2

2

2

2

2
0f

x y z
f( ) ( )r r

∂
∂

∂
∂

∂
∂

(B.8)

whereas the irregular solid harmonics are solutions for all r ∈ �3\{0}.
In connection with the differential operator Y l

m ( )∇ , it is more natural to
introduce the regular solid harmonics as polynomials satisfying the Laplace
equation (B.8). Suitable subsets of the polynomials in x, y, and z can be
characterized by their transformation properties. For example, the homoge-
neous polynomials Pl (x,y,z) of degree l satisfy

P x y z P x y z ll
l

l( , , ) ( , , ) , , .η η η η η= ∈ ∈� �0 (B.9)

A special subset of the homogeneous polynomials of degree l are the so-
called harmonic polynomials Hl (x,y,z) of degree l that are also solutions of
the homogeneous Laplace equation (B.8), i.e., they satisfy

∇ =2 0H x y zl ( , , ) . (B.10)

For a given l ∈ �0 there are exactly 2l + 1 linearly independent harmonic
polynomials Hl (x,y,z) (see for example ref.39, p. 123 or ref.130, Appendix
H.3). Accordingly, the regular solid harmonics span the space of harmonic
polynomials of degree l:

H x y z Cl l
m

m l

l

l
m( , , ) ( ) .=

=−
∑ Y r (B.11)

It follows from its definition (B.6) that the regular solid harmonic Y l
m ( )r is

a homogeneous harmonic polynomial of degree l in the Cartesian compo-
nents of r = (x, y, z) (ref.34, p. 71):

Y l
m

m k

l
l m l m

x y x

( ) ( ) !( ) !

( ) (

/

r = + + −
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1 2
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(B.12)

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Spherical Tensor Gradient Operator 1265



C. Gaunt Coefficients

The so-called Gaunt coefficient131 is the integral of the product of three
spherical harmonics over the surface of the unit sphere in �3:

〈 〉 = ∫l m l m l m Y Y Yl
m

l
m

l
m

3 3 2 2 1 1 3

3

2

2

1

1| | [ ( )] * ( ) ( ) .Ω Ω Ω Ωd (C.1)

Gaunt coefficient can be expressed in terms of Clebsch–Gordan coefficients
(ref.34, Eq. (3.192)) or 3jm symbols (ref.128, p. 168):
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+ +
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It follows from the orthonormality of the spherical harmonics that the
Gaunt coefficients linearize the product of two spherical harmonics:

Y Y lm m l m l m Yl
m

l
m

l
m m

l
1

1

2

2 1 22
1 2 1 1 2 2( ) ( ) | | ( ) .( )Ω Ω Ω= 〈 + 〉 +

=
∑
l

l

min

max

(C.4)

The symbol ∑(2) indicates that the summation proceeds in steps of two. The
summation limits in (C.4), which follow from the selection rules of the 3jm
symbols, are given (by ref.132, Eq. (3.1))

l l lmax = +1 2 (C.5a)

l
l

lmin
min max min

min max min

,

,
=

+
+ +

λ λ
λ λ

if is even

if is od1 d




(C.5b)

λ min max(| | ,| |) .= − +l l m m1 2 1 2 (C.5c)
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Gaunt coefficients can be computed according to either (C.2) or (C.3) via
the numerous explicit expressions for Clebsch–Gordan coefficients or 3jm
symbols described in the literature. In the case of small angular momentum
quantum numbers, this is a satisfactory approach, but in the case of large
angular momentum quantum numbers, the computation of individual
Clebsch–Gordan coefficients or 3jm symbols via their explicit expressions
becomes computationally costly. In addition, a catastrophic accumulation
of rounding errors can easily happen. A much better approach consists in
the use of a recurrence formulas for 3jm symbols derived by Schulten and
Gordon133. Although this recursion is stable neither upwards nor down-
wards, it is nevertheless possible to compute in this way whole strings of
3jm symbols efficiently and reliably even for very large angular momentum
quantum numbers134. In ref.132, a FORTRAN program is described that com-
putes simultaneously all Gaunt coefficients occurring on the right-hand
side of (C.4) with the help of the recurrence formula and the computational
algorithm of Schulten and Gordon133,134.

It may be of interest for the reader that several articles on Gaunt coeffi-
cients have appeared in recent years135–140. Then, there are some very recent
articles by Dunlap31–33, but the objects he considered are not the usual
Gaunt coefficients defined in (C.1) but rather generalizations that occur in
the context of molecular multicenter integrals of spherical Gaussian func-
tions.

In this article, the following abbreviations will frequently be used:

∆l l l l= + −( )1 2 2 (C.6)

∆l l l l1 1 2 2= − +( ) (C.7)

∆l l l l2 1 2 2= + −( ) (C.8)

σ( ) ( )l l l l= + +1 2 2 (C.9)

If the three orbital angular momentum quantum numbers l1, l2, and l sat-
isfy the summation limits (C.5), then these quantities are always positive
integers or zero.
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